import numpy as np

import roboticstoolbox as rtb

from spatialmath import *

from math import pi

import matplotlib.pyplot as plt

from matplotlib import cm

np.set_printoptions(linewidth=100, formatter={'float': lambda x: f"{x:8.4g}" if abs

%matplotlib notebook

The solution of the inverse kinematics problem, similarly to the forward kinematics, must be
started with the creation of a model of the manipulator.

L1 = rtb.DHLink(d=1.0, alpha=pi/2, theta=0.0, a=0.5)
L2 = rtb.DHLink(theta=0.0, a=0.7)
robot = rtb.DHRobot([L1, L2])

In the next step, it is necessary to determine the position and orientation of the manipulator
tip for which the problem is to be solved. This position and orientation should be presented
in the form of a homogeneous matrix. One of the simplest ways is to define a translation and
rotation matrix. The translation matrix is created using the SE3 command as in the example:

trans = SE3(0.1, 0.2, 0.3)
The subsequent arguments correspond to the x, y and z coordinates of the given point.

trans = SE3(0.5, 0.0, 1.7)
trans

This creates a homogeneous matrix, the rotation part of which is an identity matrix. To create
the appropriate rotation matrix, use the command SE3.0A.

y = [0,0,1]
z [1,0,0]
rot = SE3.0A(y, z)

Parameters y and z refers to:

® vy - vector parallel to the y axis of the tool
® 7 - vector parallel to the z axis of the tool

y = [0,0,1]

z = [1,0,0]

rot = SE3.0A(y, z)
rot

Note that vectors y and z cannot be zero or parallel. However, it is not necessary to
normalize the vectors or ensure their perpendicularity. In the case of a pair of non-
perpendicular vectors, vector z will be kept in the resulting matrix and vector y will be fitted
to it. This operation results from the fact that the vector z determines the so-called direction



of approach, or simply the position of the main axis of the tool, the y vector is responsible
for the rotation of the tool around this axis.

y [1,0,0.5]

z [1,0,0]

rot = SE3.0A(y, z)
rot

By multiplying the translation and rotation matrices obtained in that way, one can easily
create the desired homogeneous transformation matrix.

T = trans * rot

T

The solution to the inverse kinematics problem can be obtained by calling the ikine_LM
method on the robot object and passing a homogeneous matrix as an argument.

sol = robot.ikine_LM(T)
The returned object sol contains solution of the problem: vector of joint coordinates and
information about whether the given position was reached.

sol = robot.ikine_LM(T)
sol

In the example above, you can see that the calculated joint coordinates vector is [1.458,
-0.5544]. However, the parameter success=False means that the given position has not been
reached (i.e., there is no solution for inverse kinematics problem).

print(sol.success)
print(sol.q)

In this case, the problem with the solution is due to the very simple structure of the
manipulator, which gives very limited mobility. In such cases, it may not be possible or
necessary to maintain all position/orientation constraints. The tool anticipates such
situations and makes it possible to specify in the ikine_LM method a mask responsible for
which elements of the given position must be exactly reached. The mask should be a six-
element array of Os and 1s, in which successive elements mean the need to accurately
reproduce, respectively: x, y, and z positions and rotations around the x, y and z axes.

mask = np.array([0, 1, 1, 0, 0, 9]) # 1t 1s required to exactly reach y
and z coordinates

sol = robot.ikine LM(T, mask=mask)

You have to remember that the number of 1s in the mask cannot be larger than the number

of degrees of freedom of the manipulator.

mask = np.array([0, 1, 1, 0, @, 0])
sol = robot.ikine LM(T, mask=mask)
sol



print(sol.success)
print(sol.q)

Often, specifying only the given position may not be sufficient to find a solution, even
though the position is reachable. If it is possible, it is also worth providing the initial value of

the joint variables to the ikine_LM method.

mask = np.array([0, 1, 1, 0, 0, @])
g9 = np.array([0.0, 1.0])
sol = robot.ikine LM(T, q@=g0@, mask=mask)

mask = np.array([0, 1, 1, 0, 0, @])

go = np.array([e.e, 1.0])

sol = robot.ikine_LM(T, g©=9@, mask=mask)
print(sol.success)

print(sol.q)



