import numpy as np

import roboticstoolbox as rtb

from spatialmath import *

from math import pi

import matplotlib.pyplot as plt

from matplotlib import cm

np.set_printoptions(linewidth=100, formatter={'float': lambda x: f"{x:8.4g}" if abs

%matplotlib notebook

The robotics toolbox allows you to define a robot in many ways. Here the robot model will
be based on 2 types of objects: DHLink and DHRobot. If you are using Matlab environment

the same effect is available when using commands Link and SeriaLink.

Object DHLink can contain information about both kinematic and dynamic properties. Only
elements related to the kinematics of the manipulator will be considered here. Defining a
single DHLink object looks like this

L1 = rtb.DHLink(d=0.0, alpha=0.0, theta=0.0, a=0.0, sigma=0)

where L1 is the name of the variable, into which the created object will be entered. The
required parameters are in accordance with the DH notation, the additional parameter
sigma defines the joint type: 0 - rotary joint, 1 - prismatic joint. The values given in the
example above are the default values of individual parameters, which means that it is not
necessary to provide the values of all parameters and if any parameter is missing, the default

value will be used. For example, a rotary joint can be defined like this:

L1 = rtb.DHLink(d=1.0)
In Python, you can also omit the names of the parameters by giving arguments only, then

their interpretation is determined by the order, you cannot omit parameters with a default

value, e.g.:

L1 = rtb.DHLink(1.9) # equals L1 = rtb.DHLink(d=1.0)

L2 = rtb.DHLink(1.0, 0.0, 0.0, ©.5) # equals L1 = rtb.DHLink(d=1.6, a=0.5)
L2 = rtb.DHLink(1.0, 0.5) # equals L1 = rtb.DHLink(d=1.0,
alpha=0.5)

The creation of a simple two-joints manipulator may look like this:

L1
L2

rtb.DHLink(d=1.0, alpha=pi/2, theta=0.0, a=0.5)
rtb.DHLink(theta=0.0, a=0.7)

To build a robot model, you need to create a new DHRobot object. As an argument to the
constructor, it is enough to pass a list of defined objects of the DHLink type, which in the

given order will create the kinematic chain of the manipulator.

robot = rtb.DHRobot([L1, L2])

After the robot object is created, you can view the DH table and validate the model.

print(robot)

1 I I I 1
les | ds |as | o« |
| | | | |
1 I I 1 1
| g1 | 1.0 | 0.5 | 90.0° |
| 2| 6.0 | 0.7 | o.0° |
L 1 1 | |

Note: For rotary joints, the value of the variable angle 0 has to be declared as 0, the

same applies to the d parameter for prismatic joints.

A robot created in this way can be visualized using the plot command invoked on a
DHRobot object. As an argument, a list of values of successive join variables should be

given.

robot.plot([0.0, 0.0]);

~ 1.0
~ 0.8
~ 0.6 i
- 0.4
~ 0.2
ame
~ 0.0
~ 06
~ 04
» ~ 02
0.0 r =S 07
0.2 “ 4
0.4 ’ —0.2
0.6 - , o~ _o0d
v oy 06

By giving an array of many elements as an argument to the plot method, it is possible to
show an animation of the manipulator's movement.

ar = []

for i in range(101):
q = [0.0, pi/ilee * i]
qr.append(q)

g_array = np.array(qr)
robot.plot(qg_array)

t=5.00

= 1.4
= 1.2
= 1.0 7
= 0.8
= 0.6
= 04

= 0.2
name ~ 0.0

<roboticstoolbox.backends.PyPlot.PyPlot.PyPlot at ©x7f907df1d750>

The position of the manipulator tip for the given values of joint variables - a solution of a
forward kinematics problem - can be found using the fkine method. As in the plot method,

the values of the join variables should be given as an argument.

robot.fkine([0.0, 0.9])

SE3: 1 (4] (%] 1.2
0 0 -1 0
0 1 0 1
9 0 (%] 1

The returned result is a homogeneous matrix describing the location of the manipulator's tip
in space.

The time plot of joint variables can be visualized on a graph.

rtb.tools.trajectory.gplot(qg_array, block=True)

30- o

P
Ln
%

%]
o

Joint coordinates (rad,m)
5

=
(&)
\\.

0.0 <
0 20 40 60 80 100
Time (s)

To save the result to a file, use the following code:

with open("result.txt"”, "w") as file: # opening file "result.txt"” in
write mode ("w")
file.write("Insert text here") # appending text to the file

NOTE: If the file already exists, the previous content of the file will be lost and replaced

with the new one.

with open("result.txt", "w") as file:
file.write("Insert text here")

